비영어권 저자들을 위한 학술 논문출간 영문교정 서비스
header call icon
월~금 09 : 00 ~ 18 : 00

Global Reach

번역샘플 - 분석화학 (Analytical Chemistry)

품질 및 시기 적절한 투고물을 제공하는 것은 급선무로 특히 조절 의뢰의 경우 더욱 필요하다.

이나고는 주제별 전문가 리뷰어, 번역가, 저자, 교정자로 이루어진 특별한 팀과 함께 더불어 귀하의 언어로 24 시간 전문 프로젝트 관리자를 제공함으로써 정시에 고품질의 투고물을 제공합니다. 저희는 단어 대 단어 번역을 뛰어 넘어 최첨단 기술과 엄격한 프로세스를 통해 귀하의 주제 영역의 뉘앙스까지 살린 고품질 번역을 제공합니다.

아래는 저희의 우수한 번역본의 샘플들입니다.

Pt/모데나이트 제올라이트 촉매의 SEM 영상은 그림 2에 나타나 있으며 촉매가 균질한 형태를 가지고 있음을 보인다. 표면적은 촉매 활동에 핵심적인 역할을 한다. 표면적이 높으면 반응제의 흡수가 개선된다. 촉매의 표면적은 BET 표면 분석으로 측정된다. Pt/모데나이트 제올라이트의 표면적은 296.69 m2/g였다. Pt/모데나이트 제올라이트의 XRD 패턴(그림 3)은 2θ = 6°–30°에서 가장 강렬한 최대 회절를 보인다. 제올라이트의 MOR 구조와 좋은 결정 특성이 확인되었다.
펜타인 이성질체의 이원 혼합물에서 순수 n-펜타인과 n-펜타인의 하이드로 이성질체화는 광범위한 실험 조건에서 Pt/모데나이트 촉매를 통해 수행되었다. 하이드로 변환 제품은 이성질화 및 균열 제품으로 구성된다. 다음 하위 섹션에서는 반응 매개 변수가 공급원으로서 순수 n-펜타인의 촉매 성능에 어떤 영향을 미치는지 다룬다. 이 성능은 촉매 활성 및 이성질체화의 선별성에 의해 입증된다. 그렇다면, 이원 혼합물에서 n-펜타인의 이성질체화에 대해 논의하겠다.
그림 4는 n-펜타인의 변환을 반응 온도 함수로 보여준다. 반응은 대기압 150 °C에서 350 °C 온도 범위의 H2 환경에서 수행되었다. 촉매는 특히 220°C–350°C의 온도 범위에서 n-펜타인이 이성질체화가 되도록 강한 촉매 작용을 하는 것으로 보인다. 촉매의 낮은 활성도와 n-펜타인의 낮은 반응성 때문에, n-펜타인의 변환은 180°C 미만의 온도에서 무시할 수 있다. 온도를 180 °C에서 220 °C로 높임으로써, n-펜타인의 변환은 크게 증가했지만, 온도를 더 높이면 변환 속도가 느려진다. 이는 온도가 180°C-220°C 범위로 증가할 때 반응을 위해 활성화될 수 있는 영역의 수가 증가하기 때문에 일어나는 것일 수 있다. 그러나, 고온에서의 열역학적 제한으로 인해 온도가 올라가면 변환 속도가 떨어지기 시작한다. 즉, 온도를 높이면 항상 반응 속도가 높아진다. 낮은 온도에서, 실제 변환은 낮은 반응 속도 때문에 평형 변환보다 훨씬 낮을 것이다. 반대로 고온에서는 반응 속도가 높아 평형 변환이 더 쉬워진다.

Figure 2 shows an SEM image of the Pt/mordenite zeolite catalyst. The image indicates the catalyst has a homogeneous morphology. The surface area is key in the catalyst activity. Higher surface area improves the reactant adsorption. The catalysts surface area was measured by BET. The surface area of Pt/mordneite zeolites were 296.69 m2/gm. The XRDs pattern of Pt/mordenite zeolite (Figure 3) exhibits the most intense diffraction at 2θ = 6 - 30o, and it thus confirmed structure of zeolite as the MOR as well as its crystalline nature being good.
The hydroisomerization of pure n-pentane and n-pentane in a binary mixture of pentane isomers was performed by the Pt/mordenite catalyst for wide ranges of experimental conditions. The hydrological conversion products comprise of both isomerization and cracking products. Hence the following subsections discuss reaction parameters effects with the catalytic performance of pure n-pentane as feed are demonstrated by catalytic activity and isomerization selectivity. After this, the isomerization of n-pentane in the bi mixture is discussed.
Figure 4 shows the conversion of npentane as a function of reaction temperature. The tests were performed in an H2 environment at temperatures ranging from 150 - 350 °C at atmosphere pressures. It clearly shows that the catalyst showed a high catalysing activity for the isomerization of npentane, particularly in the temperature ranging in 220-350 ° C. Because of the low activity of the catalyst and the low reactivity of n-pentane, the conversion of n-pentane is negligible from temperatures below 180 °C. By increasing the temperature at 180 to 220 °C, the conversion of n-pentane rose greatly; however, a further increase in temperature slowly rises conversion. This can be caused by an increasing the number of sites which can be activated for the reaction when the temperatures increases in the range from 180 - 220 °C; but, the rate of conversion decreases because of thermodynamic restriction at bigger temperature. In other words, an increasing temperature always means increasing reaction rate. Thus at low temperatures the actual conversion will be far below the equilibrium conversion because of low reaction rate. On the contrary at higher temperatures the equilibrium conversion will be more easy due to a high reaction rate.

Figure 2shows anAn SEM image of the Pt/mordenitezeolite catalyst. The image  is shown in Figure 2 and indicatesthat thecatalyst has a homogeneous morphology. The surface area isplays akey rolein the catalystcatalyticactivity. HigherHigh surface areaimproves the reactant adsorption. ofreactants. The catalysts surface area of thecatalyst was measured by BET. surface analysis.1 The surface area of Pt/mordneite2mordenitezeolites were 296.69 m2/gm. The XRDsXRDpattern of Pt/mordenite zeolite (Figure 3) exhibits the most intensediffraction peaks at 2θ = 6 - 30o, and it thusconfirmed 30othe MOR structure ofzeolite asthe MOR as well asand its good crystallinenature beinggood. are thus confirmed.3

The hydroisomerizationof pure n-pentane and n-pentane in a binary mixture of pentane isomers wasperformed by the Pt/mordenite catalyst forunder awide rangesrangeof experimental conditions. The hydrological hydro-4conversionproducts comprise of both isomerization and cracking products. Hence theThefollowing subsections discuss cover how the reactionparameters effects withaffect thecatalytic performance of pure n-pentane as the feed are, which isdemonstrated by catalytic activity and isomerization selectivity.5 After thisThen,the isomerization of n-pentane in the bibinarymixture is discussed in the last part of this section6.

Figure 4 showsthe conversion of npentane as a function of reaction temperature. The testsreactions7were performed in an H2 environment at temperatures ranging from 150- 350 °C at atmosphere pressures. It clearly shows that the catalyst showed ahigh catalysing activity for the isomerization of npentane,particularly in the temperature ranging inrange of 220-350° C. Because of the low activity of the catalyst and the low reactivity ofn-pentane, the conversion of n-pentane is negligible from temperatures below180 °C. By increasing the temperature at 180 to 220 °C, the conversion ofn-pentane roseincreased greatly;however, a further increase in increasingthe temperature slowly risesfurther results in a slow8conversion. This can be caused by an increasing the number of siteswhich can be activated for the reaction when the temperatures increases in therange from 180 - 220 °C; but, the rate of conversion decreases because ofthermodynamic restriction at bigger temperature. In other words, an increasingthe temperaturealways meansincreasingresults in a higher reaction rate.Thus at low temperatures, the actual conversion will be farbelow the equilibrium conversion because of low reaction rate. On the contraryat higher temperatures the equilibrium conversion will be more easy due to a highreaction rate.

  1. [철자 오류] 철자 오류를 수정했습니다.
  2. [전문용어 선택] [전문분야] 전문적 측면에서 더 정확한 단어 선택
  3. [가독성] 표현과 가독성이 향상되었습니다.
  4. [오역] 전문용어의 오역을 수정했습니다.
  5. [명확성] 단어 선택과 언어 문제를 개선하여 명확성과 흐름이 좋아졌습니다.
  6. [누락] “Last part”가 누락되었습니다.
  7. [전문용어 선택] 더 적합하고 정확한 전문용어를 선택했습니다.
  8. [명확성] 더 나은 표현과 단어 선택으로 명확성을 높였습니다.

Figure 2shows anAn SEMA scanning electron microscopy1 image of thePt/mordenite zeolite catalyst. The image  is shown in Figure 2and which indicatesthat thecatalyst has a homogeneous morphology. The surface area plays a key role in the catalyticactivity.  is homogeneousHigher.Highsurface area improves the reactant adsorption, of reactants. thus playing a key role in the catalytic activity2. The catalysts surfacearea ofthe Pt/mordenitezeolite3 catalyst was4 measured by BET.Brunauer–Emmett–Teller surface analysis5. Thesurface area of Pt/mordneitemordenite zeoliteswerewas 296.69 m2/gm6.The XRDX-raypowder diffraction pattern of Pt/mordenite zeolite (Figure 3)exhibits the most intense diffraction peaks at 2θ = 6 - 30o,and it thus confirmed 6°–30o7, thus confirming the MOR structure ofzeolite asthe MOR as well as and its good crystallinenature beinggood. are thus confirmed.8

Thehydroisomerization of pure Pure n-pentane andn-pentane in a binary mixture of pentane isomers was performed byhydroisomerized usingthe Pt/mordenite catalyst forunder a wide rangesrangeof experimental conditions. The hydrological hydro-conversion9 products comprise ofprocessyielded both isomerization and cracking products. Hence theThe In the followingsubsections, discuss cover howthe effects of reaction parameters effects with10affect on thecatalytic performance of pure n-pentane as the feed are which is demonstratedbybased oncatalytic activity and isomerization selectivity. 11After thisThen,the isomerization of n-pentane in the bibinarymixture is discussed in the last part of this section.12

Figure 4 showsthe conversion of npentane n-pentane13 as a function ofreaction temperature. The testsreactions14 wereperformed in an H2 environment at temperatures ranging from 150 °C to 350 °C at atmospherepressures. It clearly shows that theatmospheric pressure. The catalyst showeda high catalysing activity for the isseen to strongly catalyze the isomerization of npentanen-pentane, particularlyin the temperature ranging inrange of 220 °C-350 °C. Because of the low activity of thecatalyst and the low reactivity of n-pentane, the conversion of n-pentane isnegligible from at temperatures below 180 °C. By increasing thetemperature at from180 °C to 220 °C, theconversion of n-pentane roseincreased greatlysignificantly;however, a further increase in increasingthe temperature slowly risesfurther results in a slowconversion.15 This can be caused by anincreasingattributed to an increase inthe number of sites which that can be activated for the reaction when thetemperatures increases in the range from 180 °C- 220 °C; buthowever,the rate ofconversion decreases ratebegins to decrease as the temperature increases because ofthermodynamic restrictions at bigger higher temperatures. In other words, an increasing the temperaturealways means increasingresults in ahigherfaster reaction rate. ThusatAt low temperatures,the low reaction rates cause the actualconversion will to be far below the equilibrium conversion because of low reaction rate. On the contraryIncontrast at higher temperatures theequilibrium conversion will be more easyis easily achieved due to a the highreaction rate.

  1. [약어] 텍스트 전반에 걸쳐 약어의 철자가 올바르게 되었습니다.
  2. [가독성] 표현과 간결함이 좋아졌습니다.
  3. [철자 오류] 철자 오류를 수정했습니다.
  4. [주어 동사 일치] [문법] 주어-동사 일치는 “surface area”가 단수이므로 여기에서 단수 과거 시제 "was"를 사용해야 합니다. “were"는 복수형입니다.
  5. [전문용어 선택] [전문분야] 전문적 측면에서 더 정확한 단어 선택
  6. [단위] [전문분야] BET 표면적(BET surface area)은 일반적으로 단위 질량 또는 단위 부피당 면적을 나타냅니다. 이 경우에 “gm”을 “g”로 수정할 것을 제안합니다.
  7. [구두점] 범위는 하이픈이 아니라 대시를 사용하여 표시합니다.
  8. [가독성] 표현과 가독성이 향상되었습니다.
  9. [오역] 전문용어의 오역을 수정했습니다.
  10. [명확성] 단어 선택과 언어 문제를 개선하여 명확성과 흐름이 좋아졌습니다.
  11. [가독성] 표현과 가독성이 향상되었습니다.
  12. [누락] “Last part”가 누락되었습니다.
  13. [일관성] [스타일] 일반적으로, n-pentane은 하이픈을 사용합니다. 앞서 하이픈을 사용했으므로 표기법이나 철자법을 문서 전체에서 동일하게 적용해야 합니다.
  14. [전문용어 선택] 더 적합하고 정확한 전문용어를 선택했습니다.
  15. [명확성] 더 나은 표현과 단어 선택으로 명확성을 높였습니다.

A scanning electron microscopy image of the Pt/mordenite zeolite catalyst is shown in Figure 2 which indicates that the catalyst morphology is homogeneous .High surface area improves the reactant adsorption, thus playing a key role in the catalytic activity . The surface area of the Pt/mordenite zeolite catalyst measured by Brunauer–Emmett–Teller surface analysis.was 296.69 m2/g. The X-ray powder diffraction pattern of Pt/mordenite zeolite (Figure 3) exhibits the most intense diffraction peaks at 2θ = 6°–30°, thus confirming the MOR structure of zeolite as well as its good crystalline nature .
Pure n-pentane and n-pentane in a binary mixture of pentane isomers was hydroisomerized using the Pt/mordenite catalyst under a wide range of experimental conditions. The hydro-conversion process yielded both isomerization and cracking products. In the following subsections, the effects of reaction parameters on the catalytic performance of pure n-pentane as the feed are demonstrated based on catalytic activity and isomerization selectivity. Then, the isomerization of n-pentane in the binary mixture is discussed in the last part of this section.
Figure 4 shows the conversion of n-pentane as a function of reaction temperature. The reactions were performed in an H2 environment at temperatures ranging from 150 °C to 350 °C at at atmospheric pressure. The catalyst is seen to strongly catalyze the isomerization of n-pentane, particularly in the temperature range of 220 °C–350 °C. Because of the low activity of the catalyst and the low reactivity of n-pentane, the conversion of n-pentane is negligible at temperatures below 180 °C. By increasing the temperature from 180 °C to 220 °C, the conversion of n-pentane increased significantly; however, increasing the temperature further results in a slow conversion. This can be attributed to an increase in the number of sites that can be activated for the reaction when the temperatures increases in the range from 180 - 220 °C; however, the r conversion rate begins to decrease as the temperature increases because of thermodynamic restrictions at higher temperatures. In other words, increasing the temperature results in a faster reaction rate. At low temperatures, the low reaction rates cause the actual conversion to be far below the equilibrium conversion rate. In contrast at higher temperatures the equilibrium conversion is easily achieved due to the high reaction rate.

번역 견적 문의
고객상담월- 금 09 : 00 ~ 18 : 00
24시간  견적의뢰 가능 (일요일 제외)